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ARTICLE INFO ABSTRACT

While ballast water has long been linked to the global transport of invasive species, little is known about its
microbiome. Herein, we used 16S rRNA gene sequencing and metabarcoding to perform the most comprehensive
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Microbiome harbor, and 6 open ocean water samples from four world ports (Shanghai, China; Singapore; Durban, South

Africa; Los Angeles, California). In addition, we cultured Enterococcus and E. coli to evaluate adherence to
International Maritime Organization standards for ballast discharge. Five of the 41 vessels — all of which were
loaded in China - did not comply with standards for at least one indicator organism. Dominant bacterial taxa of
ballast water at the class level were Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia. Ballast water
samples were composed of significantly lower proportions of Oxyphotobacteria than either ocean or harbor
samples. Linear discriminant analysis (LDA) effect size (LEfSe) and machine learning were used to identify and
test potential biomarkers for classifying sample types (ocean, harbor, ballast). Eight candidate biomarkers were
used to achieve 81% (k nearest neighbors) to 88% (random forest) classification accuracy. Further research of
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these biomarkers could aid the development of techniques to rapidly assess ballast water origin.

1. Introduction

The volume of total ballast water discharges to ports in the United
States has grown significantly over the last decade (Gerhard and
Gunsch, 2018). This increase in ballast water discharge may provide
additional opportunity for the accidental co-discharge, and introduc-
tion, of aquatic invasive species (Bax et al., 2003; Carlton, 2001). Fol-
lowing a ballast-associated cholera outbreak in Peru during the 1990s, a
renewed focus was placed on the role of ballast water management in
preventing accidental microbial introduction (McCarthy and
Khambaty, 1994; Ruiz et al., 2000).

Ballast water is a known vector for the global proliferation of pa-
thogens (Aguirre-Macedo et al., 2008; Drake et al., 2005, 2007; Ruiz
et al., 2000). Recent research has discovered that ballast water may also
serve as a vector for the global movement of antibiotic resistance genes
(ARGs) (Ng et al., 2018). The World Health Organization has called the
global proliferation of antibiotic resistance the greatest risk to human
health in the 21st century (WHO, 2014). The possibility of ARG
translocation in ballast water further necessitates the need for effective

ballast water management and regulation. As a result, there has been a
push by researchers and regulators to develop tools for rapid mea-
surement of vessel compliance prior to discharge (Drake et al., 2014;
Egan et al., 2015; Emami et al., 2012; Fykse et al., 2012).

Effectively advising the development of ballast water management
techniques requires the use of advanced characterization technologies.
One such characterization technology is high throughput sequencing
(HTS), which has made large improvements in cost and accuracy over
the last decade (Czaplicki and Gunsch, 2016; Shokralla et al., 2012).
These improvements have brought HTS into the mainstream of en-
vironmental science, and it is used to augment analysis of environ-
mental questions from bioremediation to water quality to the impacts of
air pollution (Adar et al., 2016; Gwin et al., 2018; Lefévre et al., 2018;
Staley et al., 2013). DNA in environmental matrices is often referred to
as environmental DNA or eDNA and can be used to analyze community
ecology dynamics that may not be feasible to examine via other
methods (Brady, 2007; Li et al., 2018; Stoeck et al., 2018; Thomsen and
Willerslev, 2015). In addition, HTS has been shown to be well-suited to
identifying novel biomarkers for classification (Tan et al., 2015).

Abbreviations: ASV, amplicon sequence variants; DADA, Divisive Amplicon Denoising Algorithm; EEZ, exclusive economic zone; HTS, high throughput sequencing;
IMO, International Maritime Organization; kNN, k nearest neighbors; LDA, linear discriminant analysis; MPN, most probable number; NMDS, non-metric multi-
dimensional scaling; OOB error, out-of-bag error; OTU, Operational Taxonomic Unit; PCoA, Principal Coordinates Analysis
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The application of HTS to examine environmental DNA in ballast
water is still a developing field with relatively little published research.
Recent studies have used HTS to examine different portions of the
ballast microbiome, including the 16S rRNA gene, eukaryotic 18S rRNA
gene, and viral fractions (Brinkmeyer, 2016; Darling et al., 2018; Kim
et al., 2015; Lymperopoulou and Dobbs, 2017; Ng et al., 2015). Pre-
viously published HTS studies have examined relatively small sample
sizes, with the largest eukaryotic 18S rRNA gene study examining 39
ballast water samples (Darling et al., 2018), the largest bacterial 16S
rRNA gene study examining 17 ballast water samples (Lymperopoulou
and Dobbs, 2017), and the largest viral study examining five ballast
water samples (Kim et al., 2015). In addition, all of these studies were
performed on ballast water arriving in a single port.

The goals of the present study were to: 1) Perform ballast water
metabarcoding analysis on a larger sample size and geographic scale
than previously published studies; 2) Utilize bioinformatic analyses for
less-characterized matrices; and 3) Identify biomarkers that may be
useful for rapid assessment of ballast water origin. To accomplish these
goals, we characterized 41 ballast, 20 harbor and 6 open ocean water
samples via HTS. Samples were gathered from four different countries
(United States, China, Singapore, South Africa), which allowed intra-
study bacteriome comparison of ballast arriving to different ports for
the first time. Second, we utilized amplicon sequence variants (ASVs)
rather than Operational Taxonomic Units (OTUs) for classification. This
type of analysis has been shown to be better suited for less character-
ized matrices and may be ideal for analyzing ballast or ocean water
(Callahan et al., 2017). Third, machine learning was performed to
identify candidate bacteria for classification of water type (ocean,
harbor, ballast) that may be useful as potential biomarkers for ballast
water exchange in future research.

2. Materials and methods
2.1. Site selection

We selected worldwide shipping hubs as sampling sites as these
locations are likely to be ecologically important and may have the most
potential to impact other areas via ballast water translocation. In ad-
dition, preference was placed on sites near partner institutions with the
resources to collaborate on this project, and port access must be ne-
gotiable in advance of sampling trips via existing industry partnerships.
As a result of these criteria, there were no ports along the Atlantic
Ocean or in Europe that were included in this study. The ports included
in this study, the reason for including them, the sample abbreviation,
and their reference notation throughout the paper are the following: 1)
Los Angeles/Long Beach, CA — Busiest harbor along the Pacific Coast of
the United States, CA, United States; 2) Singapore — Busiest transship-
ment port in the world, S, Singapore; 3) Durban, South Africa — Busiest
port in sub-Saharan Africa, SA, South Africa; and 4) Shanghai, China —
Busiest port in the world, CN, China. All of the international research
sites are hub cities along global shipping linkages (Wang and Wang,
2011).

2.2. Sample collection

Over a two-year period from September 2015 to August 2017, a
total of 20 harbor and 41 ballast water samples were collected from
four different ports and analyzed (Table 1). Ballast samples were col-
lected by opening the ballast tank manhole and lowering a 1.2L
Kemmerer sampler to the water below (Wildco, Yulee, Florida). Three
distinct 1.2 L samples were drawn from the ballast tank at approxi-
mately 1 m below the surface and stored in autoclaved glass bottles on
ice for transport to the laboratory. Harbor water samples were collected
immediately next to the docks with moored vessels at a depth of ap-
proximately 1 m. Harbor samples were collected and analyzed using the
same methods as ballast water samples. In addition to harbor and
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Table 1
Ballast and harbor samples collected and included in this study.”
Ballast Harbor Total

LA/Long Beach, CA 23 7 30
Singapore 7 4 11
Durban, South Africa 4 4 8
Shanghai, China 7 5 12
Total 41 20 61

@ Excludes six open ocean samples collected in the South China Sea (n = 67).

ballast water samples, six open ocean samples were collected from a
sailboat in the South China Sea between Singapore and Jakarta, In-
donesia. These samples were also collected using the same techniques
and depth as ballast and harbor water samples. The specific coordinates
of open ocean samples can be found in the Supplementary material
(Table S1). Preparation for molecular analyses was performed on sail-
boat samples using a temporary lab and samples were stored in the
ship's freezer until they could be transported to a lab for further ana-
lysis.

2.3. Culture-based analyses

Culture-based analyses were performed on all harbor and ballast
water samples within 12 h of collection; however, resource limitations
at sea prevented their application to ocean samples. The combined
analyses required 20 mL of each sample. Total coliform and E. coli most
probable number (MPN) per 100 mL were measured using IDEXX
Colilert® (Westbrook, ME USA) according to the manufacturer's pro-
tocol with the slight modification of diluting the sample 10X to ac-
count for higher salinity (Microbial Contaminants Method 9223, 2005).
Intestinal Enterococcus MPN per 100 mL was calculated using IDEXX
Enterolert® (Westbrook, ME USA) according to the manufacturer's
protocol. Both of these tests are EPA approved methods for quantifi-
cation of indicator bacteria in water. These tests have been used in
geographically-remote laboratory settings and ballast water research
previously (Gerhard et al., 2017; Ng et al., 2018).

2.4. Preparation for molecular analysis

One liter of each 1.2L triplicate was filtered through 0.45pm
polycarbonate filter paper using a vacuum pump within 12h of col-
lection. The resulting filter was stored in a —20 °C freezer prior to
transport to Duke University for DNA extraction and analysis. DNA
extraction was performed on all filtered samples using the MoBio
PowerSoil® DNA Isolation Kit (Carlsbad, CA USA) according to the
manufacturer's protocol. PowerSoil® was chosen instead of
PowerWater® because prior studies show that the former can effectively
prevent inhibition (Cox and Goodwin, 2013). In addition, studies have
shown similar recovery with the two MoBio kits when using filter
homogenized samples (Kaevska and Slana, 2015).

The extraction resulted in 100 uL. DNA extract volumes for each of
the triplicates. One 100 pL volume was used for HTS analysis of the 16S
rRNA gene. The other two 100 pL elution volumes were transferred into
two single-use aliquots of 20 pL for 16S rRNA gene sequencing and one
reserve aliquot of 60 L for future analysis to be determined.

2.5. High throughput sequencing

Mlumina MiSeq amplicon sequencing was performed on all samples.
The 16S rRNA gene sequencing primers 314F (5-CCTACGGGAGGCAG
CAG-3") and 807R (5’GGACTACHAGGGTATCTAAT-3’) that cover the
V3 and V4 rRNA regions were used to amplify the bacterial fraction of
extracted DNA according to previous protocols (Prosdocimi et al.,
2013). Samples were prepared using the Illumina workflow for 16S
rRNA gene analysis (16S Metagenomic Sequencing Library Preparation,
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Mlumina Inc.). Samples were normalized, pooled, and run on a paired-
end MiSeq platform using V3 sequencing technology.

Raw sequencing reads were processed in R using the DADA2
bioinformatics package according to a previously described pipeline
(Callahan et al., 2016). Briefly, the Divisive Amplicon Denoising Al-
gorithm (DADA) uses a model-based approach to correct amplicon er-
rors without constructing OTUs. Rather than retaining individual reads,
analysis using DADA2 generates a set of ASVs based upon the raw reads
that can then be matched against a reference database. This allows for
combination of multiple sequencing runs and reduces computational
load when working with large datasets. Though the use of exact se-
quence variants results in slightly different values for diversity and
richness metrics, values strongly correlate to OTU-based analysis.
Comparison of samples using each of these methods is likely to yield
similar results (Glassman and Martiny, 2018). In this study, we used
SILVA v132 as the reference database for 16S rRNA gene sequences.

2.6. Physical-chemical parameters and sample metadata

Temperature, pH, and salinity were measured using a YSI
Professional Plus handheld multi-parameter instrument when possible.
Access limitations prevented the use of a YSI to gather physical-che-
mical parameters in China. Instrument calibration problems resulted in
data for some samples to be removed from consideration in this study.
Of samples collected in sites when a YSI was available, physical-che-
mical parameters were gathered for 39 of 55 samples and 25 of 34
ballast water samples.

2.7. Data analysis

All downstream data analysis of 16S rRNA gene data was performed
using R in the phyloseq package (McMurdie and Holmes, 2013). Rar-
efaction was performed on all samples. In addition, Shannon's index
and Simpson's index were calculated for all samples using the phyloseq
and vegan packages (Oksanen et al., 2017). ASV data were transformed
to relative abundance of each sample. Further data visualizations that
were not available through the phyloseq or DADA2 packages were
performed using the ggplot2 package within R (Wickham, 2009).

Concentration of ASVs in different samples was compared using the
Wilcoxon rank-sum test in each sample type (ocean, ballast, harbor)
and location (California, China, Singapore, South Africa). Comparisons
were performed by combining samples into two groups. For example,
testing if the concentration of California samples differed from all other
samples was performed by creating one group of California samples and
a second group composed of all other study sites before running the
Wilcoxon rank-sum test. The concentration of E. coli and Enterococcus
was compared by converting raw concentration to log scale and per-
forming ANOVA and the Tukey test to examine differences across
sample type and location.

Cluster analysis was used to analyze community similarities be-
tween samples. The analysis was performed with non-metric multi-
dimensional scaling (NMDS) based on Bray-Curtis dissimilarities at the
phylum, class, and order levels. Edges were assigned to samples
with > 0.70 similarity. Environmental vectors and factors were fit to
the ordination plots using the envfit function in the vegan R package
(Oksanen et al., 2017). The environmental vectors included in this
analysis were temperature, pH, salinity, and ballast residence time in
the ballast tank. Samples without all four environmental variables were
not included in the vector analysis. In addition, PCoA was performed
and visualized using unweighted UniFrac distance between samples.

2.8. Machine learning to identify potential markers
Though this study is the largest high throughput sequencing study

of ballast water to date (41 ballast samples), the total sample size
(n = 67) is still relatively small to generate a machine learning model.
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As a result, machine learning was performed with 67-fold cross-vali-
dation, withholding one sample per cross-validation. Limitations of this
approach are discussed in the discussion section.

Linear discriminant analysis (LDA) effect size (LEfSe) analysis was
performed to select potential markers for classifying samples by sample
type (ballast, harbor, ocean) (Segata et al., 2011). A random forest
model using 5000 trees was generated using all potential markers and
performance metrics were recorded (Breiman et al., 2018). The variable
with the smallest contribution to classification accuracy was removed,
and the model was rerun with performance metrics recorded. Iterative
reduction of the variables input to the model was performed to de-
termine the minimum number of variables required to achieve a lower
out-of-bag (OOB) error than the original model with all 19 variables.
The robustness of the selected variables from the random forest method
was assessed by using three other machine learning methods: 1) Pe-
nalized linear regression (Goeman et al., 2018); 2) multinomial logistic
regression (Ripley and Venables, 2016); and 3) k nearest neighbors
(Ripley and Venables, 2015).

3. Results
3.1. 16S rRNA gene analysis

3.1.1. Reads, rarefaction, sample coverage, and diversity indices

Sequencing resulted in a total of approximately 22 million raw
[llumina reads across the 67 samples. Approximately 19 million reads
remained after filtering, approximately 17 million reads were tabled,
and approximately 15 million reads remained after removing chimeric
sequences. These reads corresponded to 52,838 unique ASVs.
Rarefaction curves were calculated and approached a plateau in all
samples (Supplementary data Fig. S1). The range of unique ASVs per
sample were: ballast 440 (CA13) to 2993 (S17); harbor 569 (CA21) to
4339 (CN3); and ocean 136 (S5) to 700 (S8). Shannon's index ranges
were: ballast 2.61 (S19) to 6.42 (S17); harbor 4.52 (CA39) to 6.61
(CN3); and ocean 3.13 (S2) to 5.02 (S8). Simpson's index ranges were:
ballast 0.744 (S19) to 0.995 (CA35); harbor 0.941 (SA7) to 0.994
(CN10); and ocean 0.856 (S2) to 0.982 (S8). The diversity values for all
samples are shown in the Supplementary data (Table S2).

3.1.2. Relative abundance of major amplicon sequence variants

At the phylum level, bacterial communities in ballast tanks were
dominated by Proteobacteria (11.2%, CA35 to 71.7%, S19),
Bacteroidetes (0.8%, SA6 to 51.9%, CA13), and Actinobacteria (0.2%,
SA6 to 20.8%, CN9). In harbor water samples, the major ASVs were
Proteobacteria (12.2%, CN5 to 59.5%, S12), Bacteroidetes (3.0%, CN5
to 35.8%, CA27), and Cyanobacteria (2.5%, CN10 to 27.1%, S16). In
ocean water samples, the major ASVs were Proteobacteria (19.9%, S2
to 73.5%, S5), Cyanobacteria (4.8%, S8 to 58.5%, S2), and
Bacteroidetes (4.6%, S5 to 12.7%, S8). The relative abundance of
Proteobacteria in ballast water was significantly higher than in other
sample types (p = 0.045). In addition, the relative abundance of
Cyanobacteria in ballast water was significantly lower than in other
sample types (p < 0.0001). All phyla with > 5% relative abundance
were visualized to examine for trends (Fig. 1A).

At the class level, bacterial communities in ballast water were
dominated by Alphaproteobacteria (9.0%, CA13 to 51.4%, CA31),
Gammaproteobacteria (7.7%, CN1 to 70.6%, S19), and Bacteroidia
(6.7%, SA4 to 58.7%, CA13). In harbor samples, the bacterial com-
munity was predominantly composed of Alphaproteobacteria (12.8%,
CN5 to 34.2%, SA7), Gammaproteobacteria (11.8%, S16 to 54.4%,
$12), and Bacteroidia (5.1%, CN5 to 38.0%, CA27). In ocean samples,
the major classes were Gammaproteobacteria (7.0%, S2 to 65.6%, S5),
Oxyphotobacteria (5.5%, S8 to 59.9%, S2), and Alphaproteobacteria
(10.9%, S3 to 24.6%, S7). The relative abundance of certain classes in
the ballast water microbial community had significant differences much
like the relative abundance of certain phyla. For example,
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Fig. 1. (A, left) Relative abundance of ASVs in all samples with relative abundance > 0.05 at the phylum level. (B, right) Relative abundance of ASVs in all samples

with relative abundance > 0.05 at the class level.

Oxyphotobacteria composed a significantly higher proportion of the
population in ocean and harbor water than ballast water (p = 0.012).
The composition of the ballast water bacterial community when ana-
lyzed at the class level looked similar across all locations; however, the
composition of classes in the harbor water bacterial community in
China appeared to differ from California, Singapore, and South Africa.
All classes with > 5% relative abundance were visualized to assess the
existence of trends (Fig. 1B).

3.1.3. Multivariate analysis

Cluster analysis of the relative abundance of ASVs in each sample at
the phylum level revealed a trend by location when samples were fa-
ceted by sample type. This segmentation was especially evident in
harbor water samples (Fig. 2A). In addition, ballast and harbor water
samples collected in the same location tended to cluster together in the
un-faceted analysis. A pattern of clustering despite the lack of faceting
was most easily observed in the California samples (Fig. 2B). Network
projections using Bray-Curtis dissimilarities revealed edges by location
(Fig. 3). Harbor water samples from different sites were distinct from
one another, because harbor samples from two different sites never had
a Bray-Curtis dissimilarity value < 0.70. A non-metric multi-
dimensional scaling (NMDS) plot identified possible clustering by lo-
cation. Temperature may explain some variation (r? = 0.48,
p = 0.004); however, it was likely confounded by location. Explanatory
environmental variables such as pH (r* = 0.13, p = 0.29), salinity
(r> = 0.05, p = 0.66), and residence time of ballast water in ballast

ballast harbor ocean

tanks (2 = 0.14, p = 0.27) did not have significant correlations to
sample clustering (Supplementary data Fig. S2). PCoA analysis depicts
California samples as marginally separate from all other sample loca-
tions, regardless of sample type; however, there was significant overlap
among other sample locations (Fig. 4). There was some differentiation
of Chinese samples, including a cluster of three Chinese harbor water
samples separate from all other samples; however, Chinese ballast
water samples retained apparent overlap with many other sample types
and locations.

3.2. Indicator organisms

Culture-based analysis of indicator organisms identified five vessels
that exceeded IMO Regulation D-2 for E. coli (one), Enterococcus (three),
or both (one) (Supplementary data Table S3). The number of vessels
arriving at each port that exceeded proposed regulations were:
Shanghai, China (two of seven); Singapore (three of seven); Los
Angeles/Long Beach, California (zero of 24); and Durban, South Africa
(zero of four). The IMO Regulation D-2 Ballast Water Performance
Standard includes standards for acceptable concentrations of indicator
microbes. The regulation includes language requiring E. coli con-
centration < 250 colony forming units per 100mL and intestinal
Enterococci concentration < 100 colony forming units per 100 mL. All
of the ballast samples in this study that exceeded IMO standards were
loaded in the Chinese EEZ or Chinese ports. Some harbor water samples
also exceeded IMO Regulation D-2 for E. coli (one), Enterococcus (three),

Abundance

2.500000e-01

3.906250e-03

6.103516e-05

Fig. 2. (A, left) Phylum-level clustered heatmap of relative abundance of ASVs among samples faceted by sample type. (B, right) Phylum-level clustered heatmap of

relative abundance of ASVs.
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Fig. 3. Network projection of Bray-Curtis dissimilarity values < 0.70 between linked samples calculated on relative abundance of ASVs.

or both (three). The number of harbor samples exceeding the regulation
segmented by location were: Shanghai, China (five of five); Singapore
(one of four); Los Angeles/Long Beach, California (zero of seven); and
Durban, South Africa (one of four).

ANOVA tests were performed to examine for differences in variance
among the sample locations and types. In ballast water, there were
significant differences between locations in the log transformed con-
centration of total coliforms (p < 0.001), Enterococcus (p = 0.001),
and E. coli (p = 0.003). Tukey's post hoc test identified that lower
concentrations of the tested indicator organisms were typically ob-
served in vessels arriving to the United States or South Africa when
compared to vessels arriving in China or Singapore; however, this
finding was not always statistically significant. In harbor water, there
were significant differences between locations in the log-transformed
concentration of total coliforms (p = 0.002), Enterococcus (p = 0.001),
and E. coli (p = 0.001). Tukey's post hoc test indicated that there was a

significantly higher concentration of all tested indicator bacteria in
Chinese harbor water when compared to United States or Singapore
harbor water (p < 0.05); however, there was not a significant differ-
ence between Chinese and South African harbor water.

3.3. Machine learning and classification biomarker identification

LEfSe identified 19 potential markers to indicate sample type (bal-
last, harbor, ocean) with linear discriminant analysis (LDA) values >
10* (Supplementary data Fig. S3). After iterative removal and assess-
ment of out-of-bag (OOB) error, the best random forest model used
eight variables and had an OOB error of 11.94% (Fig. 5). Based on the
iterative reduction, these eight variables (taxonomic level) in de-
creasing order of importance are: 1) HIMB11 (genus); 2) Actinobacteria
(class); 3) Cyanobium_PCC-6307 (genus); 4) Sulfurimonas (genus); 5)
Marivivens (genus); 6) Thiomicrospirales (order); 7) Gilvibacter
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Fig. 4. PCoA of all samples calculated using unweighted UniFrac on relative abundance of ASVs.
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Fig. 5. Random forest out-of-bag error when using different markers. Iterative removal of variables was performed to select the best model. The variable removed at

each step is annotated on the figure.

(genus); and 8) Microtrichales (order).

Additional machine learning models were generated using the eight
variables identified by the random forest to assess the robustness of
these indicators to additional machine learning methods. The k nearest
neighbors (kNN) approach required fewer than six neighbors to be used
so that ocean samples (n = 6) could be correctly identified. The best
performance was achieved when one neighbor was used (accu-
racy = 0.806), and the worst performance occurred when five neigh-
bors were used (accuracy = 0.657). The penalized linear regression
model had a maximum accuracy when the L2 value was 0.01 (accu-
racy = 0.776); however, this was not significantly better than the
performance of the unpenalized linear regression model (accu-
racy = 0.731). Rapid loss of accuracy was observed when penalties >
0.01 were applied to either L1 or L2 (Supplementary data Fig. S4). In
addition, the multinomial regression model performed well without
penalties. The model is improved through iteration, so the lowest ac-
curacy was observed on the initial iteration (accuracy = 0.239) and the
maximum accuracy was observed with 250 iterations (accu-
racy = 0.866). A slight decline in accuracy was recorded after 250
iterations as accuracy dropped to 0.851; however, the accuracy stabi-
lized at this value despite additional iterations.

4. Discussion
4.1. 16S rRNA gene analysis

4.1.1. Relative abundance of major amplicon sequence variants

The present study shares several findings with previously published
research. Similar to the existing literature, our study suggests that
Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and un-
classified Bacteria dominate the bacterial assemblages of the environ-
mental DNA in ballast water (Lymperopoulou and Dobbs, 2017). In
California, South Africa, and Singapore, ballast water samples had a
wider range of alpha diversity values than harbor water samples, but
the median was approximately the same between sample types (Table
S1). This was not the case in China, where harbor water samples con-
sistently had higher alpha diversity (Table S1). This finding is similar to
previous research, including findings that the ballast water alpha di-
versity of a tank loaded in Chinese ports or the Chinese exclusive eco-
nomic zone (EEZ) had a higher alpha diversity score (Ng et al., 2015).

This study identified higher relative abundance of Cyanobacteria in
harbor water and ballast water with low residence time than was

previously reported (Lymperopoulou and Dobbs, 2017). This finding
may be associated with many variables, including sample time or
sample method. In addition, a much higher number of unique ASVs
were found in this research than OTUs found in all previous studies
using HTS of 16S rRNA genes (Brinkmeyer, 2016; Lymperopoulou and
Dobbs, 2017; Ng et al., 2015). This could be explained by the larger
sample size and wider range of sample types as previously discussed.
Furthermore, the pipeline that generates ASVs will not cluster similar
sequences until later in the analysis, thereby resulting in more richness
reported in the initial stages of the pipeline.

4.1.2. Multivariate analysis

Clustering of harbor and ballast samples by sampling site is a sur-
prising result, because ballast water collected in a study site often ori-
ginates in another locale. Location-specific clustering may be related to
the route travelled by the vessels. Vessels arriving to South Africa,
China, and Singapore were typically arriving after short journeys
through the South China Sea or the Indian Ocean; whereas, vessels
arriving to California typically crossed through the North Pacific with
ballast water exchange or treatment occurring while underway. In ad-
dition, major ocean currents near Singapore, China, and South Africa
flow from the equator towards the poles, while the major ocean current
along the California coast flows from the Arctic to equator. This dif-
ference may result in different physical, chemical, and microbial
characteristics of water along the route and in the harbor. Ocean mi-
crobial community richness metrics have been previously observed to
change with latitude (Fuhrman et al., 2008), so different locations of
ballast water exchange may explain some of the variation in microbial
community dynamics of ballast water arriving at different sites. Simi-
larly, the microbial community of harbor water likely depends on
several characteristics such as turbidity, temperature, and salinity.
Harbor water samples from different sites never had a Bray-Curtis
dissimilarity value < 0.70, so the harbors included in this study often
had quite different bacterial communities when compared to one an-
other. The impact of bacterial community dynamics at the site of ballast
uptake is not well understood and should be further examined in future
research.

4.1.3. Amplicon sequence variants vs. OTUs

ASVs may be better suited than OTUs for analysis of less char-
acterized matrices, such as ocean or ballast water, because ASVs are a
DNA sequence that is determined independently of a reference
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database, which carries some intrinsic biological meaning (Callahan
et al., 2017). While we intended to characterize the amplicons as both
ASVs and OTUs to allow comparison of results, initial efforts were
abandoned because of the higher computational demand of OTU-based
analysis which led to unreasonably long lengths of analysis times. Our
experience was similar to that of others who reported that ASV based
analysis reduces the computational demands of a data set when com-
pared to OTUs (Callahan et al., 2017). Overall, we identified a higher
number of ASVs than the number of OTUs that were previously re-
ported (Lymperopoulou and Dobbs, 2017). There are several possible
explanations for why our numbers may be higher. First, the present
study examined the V3-V4 region of the 16S rRNA gene. Though the
primers and region were selected based on the Illumina standard pro-
tocol for amplicon sequencing, the lack of a large overlap region in the
forward and reverse reads likely increased the number of ASVs re-
ported. Second, a higher number of ASVs would still be expected in this
study compared to previous research, because this study included a
much larger set of samples (61 vs. a maximum of 19 in previous 16S
rRNA gene studies) that were collected in the open ocean and ballast
water from a wider geographic area (Lymperopoulou and Dobbs, 2017).
The larger number of samples as well as the diversity of samples may
have contributed to a greater number of observed microorganisms.
Third, ASV analysis is more likely than closed-reference OTU analysis to
identify high variation, because biological variation not present in the
reference database will be lost during OTU assignment (Callahan et al.,
2017).

4.2. Indicator organisms

The finding of ballast tanks exceeding IMO standards has been
previously reported (Altug et al., 2012). The presence of pathogens has
been reported in up to 48% of tanks in previous research (Burkholder
et al., 2007). A slightly lower rate of tanks with possible pathogens was
found herein (16 of 41 or 39%). However, this number may have been
higher if we had included as many pathogens as those tested in the
previous study (Burkholder et al., 2007).

The presence of indicator organisms in ballast water is not sur-
prising given their global spread. When present, the observed con-
centrations were often not problematic according to the standards set
forth by the IMO. It is important to note that at least one ballast water
sample with concentrations of either E. coli or Enterococcus that ex-
ceeded the standards was collected in both Singapore and China.
Further, China, Singapore, and South Africa all had at least one harbor
water sample with concentrations of E. coli or Enterococcus exceeding
the standards. Receiving ballast water with concentrations of indicator
organisms greater than the defined thresholds may pose a risk to human
and environmental health; however, the direct risks posed by ballast
water with high concentrations of indicator organisms are difficult to
elucidate when the receiving harbor also intermittently has values
above these thresholds.

In addition, harbors with concentrations above the recommended
standards require ballast water treatment systems to actively reduce
concentrations prior to discharge. This poses an additional challenge
when compared to ballast loaded in zones with indicator organism
concentrations below the IMO Regulation D-2 standards. In this study,
all ballast water samples above the thresholds were loaded in the
Chinese EEZ. This finding highlights the fact that certain ports may be
hot spots for microbial activity and may serve as hubs for microbial
translocation. The reasons for this observation may be regulatory (e.g.
lack of industry oversight, differential waste management) or geo-
graphic (e.g. high turbidity, warmer climate). Further research should
be performed to understand the role of individual ports in the global
proliferation of microorganisms through ballast.
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4.3. Machine learning and classification biomarker identification

The lowest OOB error in a random forest machine learning model
was achieved by using eight of the 19 variables identified by LEfSe as
possible markers for classification. The kNN and penalized regression
machine learning models using the eight markers identified from the
random forest also performed well, which suggests that the selected
markers are robust to machine learning method and may be useful
biomarkers for water type differentiation between ballast, harbor, and
ocean water. There was not sufficient sample size for a holdout test set,
which may bias the accuracy and OOB error values to indicate a better
model than reality. However, the performance of these machine
learning models could be further improved with additional tuning.
Further research applying machine learning to larger sample sizes
would be useful to generate more accurate real-world performance
metrics. In addition, future research should be performed to further
assess the reliable capability of markers identified herein for accurately
classifying ballast, harbor, and ocean water.

5. Conclusion

Ballast water had significantly different relative abundances of some
bacterial taxa compared to harbor and ocean water. This difference may
allow for the use of biomarkers to rapidly assess water origin from
ballast tanks, harbors, and ports. Further refinement of this approach
may allow for classification of ballast water as originating from a
harbor or a port. The approach described herein may serve as a useful
proof-of-concept for a machine learning and biomarkers-based ap-
proach to classification. As with other machine learning based studies,
additional work to increase the sample size will likely lead to a re-
duction in the number of necessary biomarkers needed to achieve the
desired accuracy thresholds for classification and improve the real-
world applicability of this model.
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