Ballast Water Management System Testing at Golden Bear Facility

Challenges, Solutions, and Successes - Update

Richard Muller
Assistant Director and
Engineering Operations Manager
Golden Bear Facility
March 2016
What is Golden Bear Facility?
What is Golden Bear Facility?

Approved by the USCG in November 2013 to work as sub-laboratory to DNV-GL for land based and shipboard type approval Ballast Water Management System testing
Advantages of GBF for BWMS testing

Carquinez Strait and SF Bay provide salinity variability and biologically diverse testing ground.
Advantages of GBF as Testing Facility

Perform shipboard and land-based ballast treatment testing with Cal Maritime operations team and MLML science team.
Advantages of GBF as Testing Facility

TS Golden Bear removes shipboard testing ‘ship of opportunity’ problem
Advantages of GBF as Testing Facility

TS Golden Bear removes shipboard testing ‘ship of opportunity’ problem
Advantages of GBF as Testing Facility

TS Golden Bear removes shipboard testing ‘ship of opportunity’ problem
Completed/Pending Projects

- **IMO Shipboard**
 - 2 completed (2012 & 2013)

- **IMO/USCG Shipboard**
 - 1 complete (2014)
 - 1 completion (2016)
 - 1 contracted (2016 to 2017)

- **USCG Land based**
 - 2 contracted (2015 to 2017)
 - 1 contracted (2016 to 2017)

- **R&D Projects**
 - Several full and small scale
Challenges – Solutions - Successes

1. FACILITY DEVELOPMENT FROM GROUND UP
2. CREATING A FUNCTIONING SCIENCE LABORATORY
3. MEETING TESTING REQUIREMENTS FOR TYPE APPROVAL
Facility - Challenges

- Must be capable of handling high flow rates through BWMS
- Piping/pump easy on organisms
- Varied salinity for land-based testing
- Isokinetic sampling directly from ballast stream for biological and water quality sampling
Facility - Solutions

- Larger diameter piping
 - Original diameter 5”
 - Upgraded piping 8-10”
- Valves to balance inlet/outlet pressure
- Piping angles softened
- Pump/piping was tested to confirm ease on organisms
- Sampling pitots and rig designed by independent engineering firm
- Go get the fresh water from the source
Facility - Successes

- High flow rates suitable for shipboard ballasting (up to 500 m³/hr unencumbered)
- No significant effect on live organism concentrations
- isokinetic pitot connects to sampling rig capable of variable flow rates and sampling for zooplankton
Facility - Successes

- To date we’ve been successful at testing a treatment system at the Golden Bear facility with fresh water with ambient organisms
Laboratory - Challenges

- Equipping Shipboard Laboratory
- Space limitation (100 sq ft)
- Meeting USCG QA/QC requirements and measuring WQ
- Personnel requirements
Laboratory - Solutions

- From storage/dark room to full scale lab
- Contracted Labs that conduct WQ and QA/QC
- Regularly scheduled instrument calibration
- Cal Maritime Science coordinator plus MLML full science team with two lead technicians – team of 7-10 per test
Laboratory - Successes

• Everything conducted onboard TSGB except two water quality analyses
• Reliable services from contracted labs with appropriate QA/QC
• Contracted data managers/auditors
• Able to finish ALL required and corroborative assays well within 6 hour ETV time requirement
Testing Requirements – Land based Challenges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IMO</th>
<th>USCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>--</td>
<td>4 to 35</td>
</tr>
<tr>
<td>Salinity (psu)</td>
<td>Two salinities, >10 psu difference</td>
<td>Freshwater <1 Brackish 10 to 20 Marine 28 to 36</td>
</tr>
<tr>
<td>Total suspended solids (mg/L)</td>
<td>>50</td>
<td>≥24</td>
</tr>
<tr>
<td>Particulate organic carbon (mg/L)</td>
<td>>5</td>
<td>≥4</td>
</tr>
<tr>
<td>Dissolved organic carbon (mg/L)</td>
<td>>5</td>
<td>≥6</td>
</tr>
<tr>
<td>Organisms ≥50 µm (per m³)</td>
<td>>100,000</td>
<td>>100,000 with at least 5 species present across 3 phyla</td>
</tr>
<tr>
<td>Organisms ≥10 µm and <50 µm (per mL)</td>
<td>>1,000</td>
<td>>1,000 with at least 5 species present across 3 phyla</td>
</tr>
<tr>
<td>Organisms <10 µm (per mL)</td>
<td>>10,000</td>
<td>>1,000 as culturable aerobic heterotrophic bacteria</td>
</tr>
<tr>
<td>All Organisms</td>
<td>Naturally occurring, or cultured species that may be added to the test water</td>
<td>Ambient assemblage supplemented by the addition of organisms</td>
</tr>
</tbody>
</table>
Testing Requirements – Shipboard Challenges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IMO</th>
<th>USCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisms ≥50 μm (per m³)</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>Organisms ≥10 μm and <50 μm (per mL)</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>Testing Locations</td>
<td>Uptake/Discharge in different locations</td>
<td>Provide acceptable range of geographic and seasonal variability conditions</td>
</tr>
</tbody>
</table>
Testing Requirements - Solutions

- Design, test, and validate land based WQ augmentation protocols and compounds
- Preset cruise plan that is different every year

Naples, Italy – Chlorophyll

Department of Sponsored Projects and Extended Learning
Testing Requirements - Successes

- Consistently successful at meeting biological and WQ requirements
- Shipboard testing - 4 consecutive successful summers
- Satellite imagery not perfect but very informative
Future Work

- Continuously improving and streamlining facility and operations
 - Freshwater collection and augmentation
 - Laboratory equipment
 - Storage
- Lots of inquiries for type approval testing
- Training students on operation and different types of BWMSs
- Providing ground work for student knowledge of BWMSs
Contact Information

Bill Davidson – Director
bdavidson@csum.edu

Richard Muller – Assistant Director / Engineering Ops Manager
rmuller@csum.edu

Nick Welschmeyer, PhD. – Lead Scientist
welschmeyer@mlml.calstate.edu
Thank you!