Washington Department of Fish and Wildlife

Ballast Water Exchange as a Management Tool

Presented to the Pacific Ballast Work Group

Ву

Allen Pleus April 16, 2015

BWE Effectiveness Study

Objective 4:

Develop recommendations for using ballast water exchange (BWE) sampling as a management tool for minimizing future invasive species risks to Puget Sound.

- Current use of BWE sampling includes:
 - Estimate overall non-indigenous zooplankton introduction risks to state waters
 - Demonstrate vessel is carrying high risk ballast water

WAC 220-150-035

Vessels carrying high risk ballast water

• Listing factors:

- NIS profile of originating waters
- Volume/frequency of discharge
- Ballast tank design limitations
- Unable to conduct BWE outside 50 nm
- Violation history
- Frequency of Safety Exemption claims

Delisting:

- Subsequent BWE sampling shows adequate improvement
- Changes to BW Treatment System management
- Completes approved Compliance Plan and/or Alternative Strategy

Case Study: IKAN ACAPULCO

Pre exchange: 85% Coastal Organisms (~29,000/m³)*

*Pre- and post-exchange analysis conducted by Jeff Cordell, University of Washington

Arrival Port: Vancouver, WA

Ballast water on board: 14,438 m3

Ballast water source: Stockton, CA

Department sample analysis: 98% density reduction

Post-exchange: 2% Coastal Organisms (~5/m³)

Case Study: ATB "C"

Factors affecting density and percent composition:

- Source zooplankton density
- BWE efficacy
- Oceanic zooplankton density (% comp)
- BW age
- Sampling efficacy

Which values are due to manageable high risk factors?

How does this compare to other BWE samples?

Analysis

- Relationship between percent composition & density
- 2. Identification of threshold percent composition and density values
- 3. Application of threshold values for identification of higher risk samples
- 4. Application of a method to identify low, moderate, and high priority vessels for management

Relationship between percent composition & density

 First cut: 2009 – 2014 Trans Pacific & West Coast BWE samples that discharged (n = 283)

- Weak to moderate bias towards higher density/lower percent composition
- Large variation indicates values should be viewed independently

Identification of threshold percent composition and density values

BWE Threshold:	Sample Size	Percent Co	mposition	Density (per m ³)		
Coastal Species	n =	Average	95%CI	Average	95%CI	
Trans Pacific (TP)	175	15%	19%	101	164	
West Coast (WC)	108	20%	25%	261	450	
TP & WC	283	17%	20%	162	244	
Un-Exchanged TP & WC (2001-14)	95	46%	54%	5,677	9,595	

- Evaluation of multiple potential thresholds
 - Trans Pacific and West Coast ballast origin
 - Average and 95% confidence interval
- Conservative principle applied
 - Combined ballast origin
 - Further evaluation of percent composition and density values

Application of threshold values for identification of higher risk samples

Percent Composition	Density (per m ³)	Density (per m³) Ballast Age (days)	
< 17%	≥ 162	All	12
≥ 17%	≥ 162	All	29
≥ 50%	≥ 50 and < 162	All	4
≥ 50%	≥ 10 and < 162	≥ 25	3
		Total	49

- Second cut: samples meeting lowest thresholds (n = 92)
- Third cut: application of additional threshold criteria (n = 49)
 - Row 1: anomalous low % comp/high density
 - Row 2: base % comp/minimum density thresholds
 - Row 3: anomalous high % comp/low density
 - Row 4: anomalous high % comp/low density/high ballast age

Application of a method to identify low, moderate, and high priority vessels for management

Management Priority Level	Coastal Comp (%)	Coastal Density (per m³)	BW Age (Days)	Count	Total	
	< 17	≥ 162 and < 1,000	-	11		
T	≥ 17 and < 50	≥ 162 and < 244	-	4	20	
L	≥ 50	≥ 50 and < 162	1	4	20	
	< 50	≥ 10 and < 162	≥ 25	1		
M	< 50	\geq 1,000 and $<$ 2,000	-	2	13	
	≥ 17 and < 50	≥ 244 and < 1,000	ı	7		
	≥ 50 and ≤ 100	≥ 162 and < 244	ı	1		
	≥ 50 and < 100	≥ 10 and < 162	≥ 25	3		
Н	< 50	≥ 2,000	-	2	16	
	≥ 50	≥ 244	-	14	16	

- Added subjective thresholds to sort out potential efficacy anomalies and improve separation of management priority levels
 - 50% composition; 10; 244; 1,000; and 2,000 per m3 density

Management Priority Level

Vessels meeting LOW priority level

 Technical Assistance: Letter to alert potential problems and information on common ways to improve BWE

Vessels meeting MODERATE priority level:

- Technical Assistance: Letter to alert potential problems and information on common ways to improve BWE
- Prioritize for subsequent boardings, higher investigation,
 and more sampling as resources allow

Management Priority Level

- Vessels meeting HIGH priority level:
 - Letter to alert BWE problems
 - Prioritize for subsequent boardings, higher investigation, and more sampling
 - Subsequent sampling with poor BWE efficacy may trigger
 - WAC 220-150-035 Vessels with high risk ballast water
 - WAC 220-150-037 Compliance Plans/Alternative Strategies
- Further investigation on using this system for a "gross exceedance" non-compliance BWE threshold

Additional Results

1. Minor variation by ballast origin:

53% Trans Pacific and 47% West Coast

2. Minor variation by BWE method:

57% Flow Through and 43% Empty Refill

3. All but one sample with salinity < 30 ppt.

4. Ship type:

Ship Type/Priority Category	All	Low	Mod	High
Bulk Carrier	15	3	5	7
Oil Tanker	17	10	4	3
Articulated tug-barge	7	2	0	5
Other Tanker	7	4	2	1
Container	3	1	2	0
Total	49	20	13	16

Case Study: ATB "C"

Date	11/04	3/06	3/06	3/07	7/07	7/07	7/07	1/08	7/09	8/10	4/11
Density	911	454	2,127	338	6,483	27,845	1,762	78	131	2,229	147
% Comp	15	18	44	3	25	67	11	2	5	73	18
Priority	L	M	Н	L	Н	Н	M	Х	Х	Н	Х

BWE Threshold:	Sample Size	Percent Co	mposition	Density (per m ³)		
Coastal Species	n =	Average 95%CI		Average	95%CI	
Un-Exchanged TP & WC (2001-14)	95	46%	54%	5,677	9,595	

Recommendations

- Collect and analyze ballast water exchange samples from vessels using risk profiles, data gaps, and random selection criteria.
- Increase ambient zooplankton research and monitoring efforts in Puget Sound.
- 3. Consult with Ballast Water Working Group to define regulatory and management actions based on prioritization thresholds.
- 4. Consult with Ballast Water Working Group to determine whether changes to Common Water Zone exemption area are warranted.

Thank You

Questions?