

The Need for a Multi-State Biofouling Management Plan

BY: ERIN KINCAID, ROBYN DRAHEIM, CATHERINE DE RIVERA, AND IAN DAVIDSON

\equiv

Many Invasive Species Management Plans

Research Needs

- Successful eradication methods
- Prioritization of vectors
- Monitoring procedure efficacy
- Basic biological and ecological information
- Ecological and economic impacts
- Natural barriers to spread

Goals

- Overview of current knowledge and policies addressing biofouling
- Assessment of vector operations
- Identify research gaps
- Develop a management framework
- Identify outreach options

Example of Regional AIS Management

- Spartina Eradication Action Coordination Team Work Plan
 - Developed communication lines, support network
 - Many localities have had success controlling Spartina
 - Reduced propagule pressure to areas without Spartina

買

Examples of Multi-Species Management

- National Firewood Task Force has provided recommendations for preventing interstate spread of forest pests
- Biosecurity plan in the Shetland Islands addresses ballast water and hull fouling

• WA ANS Plan establishes networks in Washington to address aquatic

invaders

- Issue: A region-wide monitoring and mapping effort is needed to document the extent and invasion risks from non-indigenous fouling species.
- Recommendation: In partnership with agencies and academic researchers, develop and execute a region-wide monitoring and mapping program.

- Issue: Fouling communities are not static due to high influx from shipping and other aquatic activities.
- Recommendation: Regularly monitor areas of high risk using dive surveys and public questionnaires.

- Issue: Rapid response is often limited by a lack of coordination and a misunderstanding of jurisdictions.
- Recommendation: Utilize Incident Command System (ICS) to compose hierarchy of responsibility for incursion response.

- Issue: No protocol to decide when to eradicate, control, or do nothing to address established populations.
- Recommendation: Develop standardized protocols for determining action options.

Benefits of Regional Approach

- Increase coordination, develop contacts and a support system
- Address threats posed by vectors without set checkpoints
 - May provide structure to address temporary pathways
- Reduce gaps in policy, response activities, and funding
- Intercept stepping stone invasions that may lead to coast wide spread

Benefits of Multi-Species Approach

- Address over 60 key invaders found within the fouling community on this coast
- Allows for management focus on vectors, reducing spread of multiple organisms
- Greater flexibility for responding to future invasions
- Timely as recession amplifies fouling risk

Next Steps

- Tunicates are being used to populate plan
 - Flexible management
 - Momentum behind managing these species
 - Identify gaps between small-scale to regionwide management
- Receive input from Pacific Ballast Water Group membership
- Hoping to work with WRP-CC to broaden scope and further input

Comments or Suggestions?

E-mail: ekincaid@pdx.edu

Acknowledgements

• Thanks to Ian Davidson, Robyn Draheim, Catherine de Rivera, Christina Simkanin, Whitney McClees, Sydney Gonsalves, and Kelton Rappleyea

References

Ashton et al. 2012. Aquatic Invasive Species Vector Risk Assessments.

Collin et al. 2015. A Biosecurity Plan for the Shetland Islands.

Fofonoff et al. 2003. National Exotic Marine and Estuarine Species Information System. http://invasions.si.edu/nemesis/.

Bax et al. 2001. Conservation Biology 15(5):1234-1246.

Bax et al. 2003. Marine Policy 27:313–323.

Bullard et al. 2007. Journal of Experimental Marine Biology and Ecology 342:99–108.

Clark and Johnston. 2009. Oikos 118:1679–1686.

DFO. 2013. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2012/049.

Dobroski et al. 2015. California Marine Invasive Species Program.

Finnoff et al. 2007. Ecological Economics 62:216–222.

Hastings et al. 2006. Theoretical Population Biology 70:431–5.

Hulme, P. E. 2006. Journal of Applied Ecology 43:835–847.

Lengyel et al. 2009. Aquatic Invasions 4:143–152.

Lodge et al. 2006. Ecological Applications: ESA Report 16(6):2035-2054.

Ruiz et al. 2000. Annu. Rev. Ecol. Syst. 31:481–531.

Takata et al. 2006. CSLC Report on Commercial Vessel Fouling in California.

Zabin et al. 2014. Management of Biological Invasions 5:97–112.