## **Update on Ballast Water Research in Canada**

Sarah Bailey

Fisheries and Oceans Canada



## **Current/Recent Projects**



- Preparing to Implement the Convention
  - Tools for rapid compliance checks
  - Risk-based decision support tool for Inspectors
  - How to collect a "representative" sample
  - Factoring uncertainty into decision-making
- Arctic Shipping Vectors
  - Ballast Water vs. Biofouling
  - Commercial vs. Military Ships
  - Coldwater treatment testing

## **Tools for Indicative Analysis**



- Previously reported on RV METEOR voyage comparing different tools/methods for ballast water analysis
- Special issue(s) in Journal of Sea Research was organized to publish findings from the cruise and more broadly on Recent Advances in Ballast Water Research
- See 'Recent Articles' online at https://www.journals.elsevier.com/journal-ofsea-research/recent-articles



## Optimizing methods to estimate zooplankton concentration based on generalized patterns of patchiness inside ballast tanks and ballast water discharges

## Sarah Bailey and Harshana Rajakaruna

(submitted to J. Applied Ecology)



#### **Research Problem**



- Zooplankton populations can be spatially heterogeneous and stratified/trended inside ship ballast tanks and in ballast discharge
- sampling protocols to monitor compliance with Regulation D-2 "should result in samples that are representative of the whole discharge of ballast water from any single tank or any combination of tanks being discharged"
- Sampling methods should therefore take heterogeneity and trends into account, for accurate estimation of tank average



## **Background Info**

- Very limited data on spatial structure of plankton inside ballast tanks some evidence for trends by depth (at least for some taxa – Murphy et al. 2002)
- Recent inline sampling studies report that zooplankton concentration can vary widely depending on the timing (sequence) of sample collection - Gollasch & David 2013
- If there are trends and patchiness in-tank and inline discharge, estimates disregarding depth and sequence of volume discharged can lead to large errors (uncertainty) in decisions on compliance



## **Research Objectives**



- to examine the spatial heterogeneity of zooplankton within ballast water
- to model and estimate the average concentration of zooplankton across the entire ballast tank
- to determine under which contexts different sampling methods are most representative (yielding the most accurate estimate of the tank average)







## Sampling methods



Fig. 1. Cross-sectional diagram of studied ballast tank (view from forward, in grey) showing the location and estimated coverage of the three sampling methods (drawn to scale). Sample points 1 through 5 were used for first four trips; sample points 1, 3, 5-7 were used for final trip. Spatial extent of in-line samples is estimated assuming little tank mixing.

## **Analytical Methods**

- Data from 5 trips (different ballast sources, age, etc.)
- Modeled data to look for trends by volume-discharged & tank depth
- Combined data across methods (net, pump, inline) to generate tank average
- Modeled standardized errors in each sample estimate w.r.t. tank averages
- Estimated bias, variance of errors and their MSE.
- bias over or underestimations;
- variance variability;
- MSE accuracy (the lower the MSE the more likely a random sample estimate approximates the tank average)



## Trends by depth / sequence



Fig. 2. Point estimates of zooplankton concentration collected by (A) in-line discharge samples and (B) in-tank pump samples across five trips. Black dotted lines denote trends within trips, solid red lines denote the generalized trend across trips, with dotted red lines indicating 95% confidence intervals.

## Pooling data to generate tank average





# Sampling Error (Bias, variance and MSE)

#### **Conclusions**

- Sample representativeness, as compared to the tank average, varied depending on the depth or tank volume discharged
- In-line discharge samples provided the least biased and most precise estimate
  of average tank abundance (having lowest MSE) when collected during the
  time frame of 20-60% of the tank volume being discharged
- As net-haul estimates show positive bias, a net-haul estimate indicating discharge standard has been met appears to be a robust "pass", while a failure to meet the standard would be uncertain



#### **Caveats**

- Results were consistent across trips despite differences in ballast water source, season, and age...
- Additional research examining sample representativeness across
  - different types of ballast tanks
  - different sizes of ships
  - a broader selection of zooplankton communities
  - treated ballast water

would be beneficial to confirm that the trends we observed are more generally applicable



## **Experience Building Phase**



- Goal: to monitor and identify aspects of the Convention that are working well / to identify issues requiring further attention
- Three stages: data gathering, data analysis, Convention text review
- Non-penalization for non-compliance with D-2 standard when Ballast Water Management System used with best intentions/effort; may take actions to protect the environment



## Science Plans 2017-18

- DFO will be trialing sampling and analysis methods to determine feasibility for use by Inspectors
- Will conduct both indicative and detailed sample analysis to examine reliability/precision of indicative methods
- Will gain information about new BWMS and how well they are working
- Aiming for 10-day monthly rotations in major ports receiving ships with BWMS (e.g. Vancouver, Saint John, and Great Lakes)
- Secondary goals: gather more data regarding plankton patchiness inside tanks; harbour sampling (?)



## **Acknowledgements**

### Thanks to lab members, academic / gov't collaborators, and industry partners!

J Adams, A Adebayo, J Bradie, E Briski, O Casas-Monroy, F Chan, M Deneau, A Drake, S Ellis, J Kydd, R Linley, H Rajakaruna, M Rup, J Vanden Byllaardt, T Wang C Henein, P Mudroch, C Wiley

> Transport Transports Canada Canada

**Funding Partners:** 



Canada



